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Motivation Research questions Results
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- Towards interpretable, controllable, human-centered creative Al that return [note + k for note in seq] generate a program | | L oo Inversion (15zis)
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n |t|v en 4+ Dr ram in tl n re Table 1: LLMs learn musical transformation rules from just 2-3 examples when scaffolded with a
Cog € science p Og a duc O \_ J DSL, achieving high success. Performance drops with weaker scaffolds (vocab-only or freeform).
 Arich body of work in cognitive science demonstrates that human [ ) _ , , _
. " . . , - Structural scaffolds bias LLMs toward generalizable rule induction
concept learning is fundamentally compositional: we build complex ideas def retro(seq): LLM proposer _ , , , _ o ,
. . . return seql ::-1]  Program induction with LLMs is tractable in music with the right
by systematically combining simpler elements . ) ,
: : . : representation
* Program induction: the process of inferring executable programs that , L , , ,
generate observed patterns - We represent musical transformations as Python functions over MIDI  Mirrors cognitive findings, suggesting a computational probe of musical
. . L . . - : reasonin
» Music is an ideal testbed due to its hierarchical, generative nature pitch sequences. Each task follows a loop: J
1. Show the model a single input—output example
2. Prompt it to propose a program explaining the mapping |mp|ications

3. Execute the program on held-out probes
4. If it fails, reveal an additional example and repeat

LLMs as program proposers

- Creative Al: interpretable, controllable, human-centered tools

« A key challenge in program induction is the curse of compositionality: the + Cognitive science: music as a testbed for program-like concept learning

. . . . [ h [ ) - Foundational step: proof-of-concept for symbolic + neural hybrids in
space of possible programs grows exponentially, making exhaustive def transform(seq,k): , ,
. DSL prompt —> return transpose(seq, k) creative domains
search intractable . ) . )
« We leverage LLMs as stochastic program proposers to make search ( LLM proposer J - N - ~
. def transform(seq):
tractable. LLMs can: | Freeform prompt | == | it seq — [66.64,671: Next steps
« Generate candidates in Turing-complete languages . ) | return [65,69,72]
- Amortize search through learned priors over program structure * Library learning: models that accumulate reusable motifs,
- Incorporate context from input-output examples  Given input-output examples, an LLM proposes candidate programs transformations, and style grammars
- Scale to realistic program complexity using one of three representational scaffolds: - Bayesian approaches: refining candidate programs through probabilistic
* DSL: prompt provides primitive signatures and their Python inference
implementations; solutions must call these primitives « Beyond atomic ops: toward richer compositional hierarchies in real music
(~ D (~ D . N . .
* Vocab: prompt lists primitive names; no implementations corpora
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Broader impact
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Music cognition <—> Creative Al - J - Empowers creators and researchers to co-create with Al that reasons in

structured abstractions human-centered tools

fundamentally human-like ways

« At each sampling step, induced programs are tested on unseen
sequences probing longer lengths, register shifts, and adversarial cases




